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ABSTRACT 
 

Teaching experience shows that programming is time consuming and can be 

acquired with substantial practice. Besides, students need to know whether 

their solutions are correct or incorrect and the root causes of their errors. 

Thus, teaching programming in a large class requires considerably many 

teaching assistants, which is costly. More importantly, a communication 

means that can support students virtually anytime is also desirable. 

In order to handle these problems, a static method was applied to build an 

online intelligent tutoring system that can assist students checking their 

solutions. In addition, when detecting the errors, this system can suggest 

students to investigate the suspected code. This feature is really significant 

for students to self-practice and improve their learning. 

 

Keywords: Intelligent Tutoring System, Programming Exercises, Program 

Verification, Group Testing, Fault Localization 

 

INTRODUCTION 
 

Programming is essential for any computer science study. Research and 

experience show that practicing with problems is the best method to master 

the programming skills. In traditional education, class tutors have to read 

students’ programs to verify their correctness. However the number of 

programs is often too much and code reading is error-sensitive. This explains 

why the method is less effective in programming courses. 

 



 

 

Automated assessment system is a good solution for this problem. This 

system checks whether the students’ programs qualify the test cases in an 

automatically generated test suite (Ala-Mutka, 2005; Douce et al., 2005; 

Jurado et al., 2012; Ihantola et al., 2010; Kaushal & Singh, 2012). However, 

this approach has some disadvantages. For example, the test suite must be 

large enough to cover all possible errors in the program and executing 

possibly buggy program is potentially dangerous for the system.  

 

To overcome such obstacles, static methods are proposed to statistically 

verify the programs correctness without running the programs. Two 

statistical methods referred as theorem proving and model checking are 

combined to build a web-based tutoring system (Quan et al., 2009). These 

methods are also known as formal methods, whereby mathematics-based 

techniques are used to check the program properties. While theorem proving 

can verify the program correctness, model checking can generate counter 

examples to help trace down the faults (bugs) via the corresponding 

execution paths if the program is false.  

 

However, this system can only help learners to be aware of programs 

correctness. It cannot help locate the root causes of the problems effectively 

since the generated counter examples are too complicated for students to 

follow. Moreover, determining the root cause locations alongside the 

execution paths provided by the counter examples is non-trivial, especially 

for novice learners in programming. 

 

Thus, it is intuitively more convenient if identification of the program parts is 

identified. This will most likely contain the root causes and can be showed to 

the students for further investigation. This was the motivation for the 

researchers to develop a framework in which the above system is combined 

with group testing and slicing spectrum-based fault localization to achieve 

the goal. Group testing is a simple yet powerful method to locate faults in the 

program, slicing spectrum-based fault localization on the contrary, is more 

complex. However, it can help to find bugs in case group testing gives the 

wrong answer. So group testing and slicing spectrum-based fault localization 

act as complements in the system. The above framework was experimented 

with non-trivial exercises in Programming Fundamentals course and positive 

results were recorded. This paper presents the proposed framework. 

Subsequently, group testing and slicing spectrum-based fault localization are 



 

 

also presented. This is followed by the presentation of two case studies. The 

final section concludes the paper. 

 

 
THE PROPOSED FRAMEWORK 
 

 
 

Figure 1. The proposed framework 
 

 

Figure 1 depicts the proposed framework on three components: Teacher, 

Learner and Coordinator. The Teacher provides the programming problems 

presented in the Problem Description Module. When the Learners visit the 

system, they can try to solve these problems. The Learner’s submitted 

program is verified by the Correctness Proving module. The Model 

Checking component will identify and show the execution paths which lead 

to error, if the program is false. 

 

When the Learner wants to find buggy portions in the program, Group 

Testing and Fault Localization modules will detect them. The process of 

detecting buggy portions uses test cases generated by Test Cases Generator 

module. In this module, test cases generated by constraint-based test-cases 

generation algorithm (Le et al., 2013) were combined with random test cases 

(although test cases are generated randomly, they are chosen to cover 

different execution paths in the program) to have a suitable test that can 



 

 

identify as many failed execution paths in the program as possible. In the 

system, instead of actually running the program, a simulator is used to find 

the program output according to the test cases. With this way, the system is 

safe and students can be influenced not to use bad programming structures. 

 

The Coordinator can use the system information such as common errors or 

behaviors of active learners to assess the course performance. This 

information is stored and analyzed in the Analysis Module. The Information 

Exchange module helps other modules exchange data. These data are 

XML-based and they are stored in the database for convenient. The above 

framework has already been implemented as a real web-based systemi. In this 

system, there are some predefined programming problems as listed in Figure 

2. The students can choose to implement the problem of their choice. Once 

selected, the website navigates to an interface in which students can write 

and submit their code as in Figure 3. 

 

 
 

Figure 2. List of exercises on Programming Problems 



 

 

 
Figure 3. The interface for writing and submitting code 

 

The framework is considered as an improvement of the existing system and 

is made from three main components: theorem proving to verify correctness; 

model checking to show failed execution paths; group testing and fault 

localization to identify buggy parts. Quan et al. (2009) present the details of 

theorem proving and model checking. In the following sections, group 

testing and slicing spectrum-based fault localization are discussed in more 

detail. 

  

GROUP TESTING 
 

Basic theory 
 

In 1943, Dorfman wanted to test whether any troop member had contracted 

the syphilis disease among the large population of soldiers during WWII 

(Dorfman, 1943). Instead of individual testing, which costs huge time and 

efforts, the soldiers were specifically divided into groups. The blood samples 

of each group were tested and if the test outcome for a group was positive, it 

was hypothesized that at least one soldier in the group was infected. 

Otherwise, all members of the group were healthy. More importantly, the test 

outcome could be used to exactly identify the infected individuals. This 

technique was known as group testing. 

 

If a group testing strategy is applied with t test samples and N items, the 

strategy can be represented using a t x N binary matrix, ( )ijM m  where



 

 

( ) 1ijm   iff item j belongs to test sample i. iM  is also used to denote the set 

of columns corresponding to the 1-entries of row i. Similarly, jM  is used to 

denote the set of rows corresponding to the 1-entries of column j. In other 

words, iM  is the ith test sample, and jM is the set of tests containing item j. 

 

Example 1. Below is a testing matrix with t = 4 and N = 6: 

 
1  1  1  0  0  0 

1  0  0  1  1  0 

0  1  0  1  0  0 

0  0  1  0  1  1 

 

1M  is the  first test sample which corresponds to first row in testing matrix. 
1M  corresponds to the first column, indicates the set of tests containing the 

first item. In that case, only the first and the second tests contain the first 

item. 

 

Definition 1 (Separable matrix).  A binary matrix M is d-separable if the 

unions of up to d columns of M are all distinct. 

 

Definition 2 (Disjunct matrix).  A binary matrix M is d-disjunct if the union 

of arbitrary ≤ d columns does not cover another column. 
 

Example 2. In Example 1, all columns in testing matrix are distinct, so it is 

1-separable matrix. And it is also 1-disjunct matrix because if an arbitrary 

column is selected, this column does not cover any other columns. 
 

If M is d-separable matrix and the number of positive items in the population 

is less than or equal to d, it can always be determined where they are from the 

test outcome using non-adaptive combinatorial group testing theory. 

Specially, if M is d-disjunct matrix, the positive items can be determined 

effectively using proper decoding algorithms. 

 

Example 3. The following is a 1-disjunct matrix with 10 items: 

 
1 1 1 1 0 0 0 0 0 0 

1 0 0 0 1 1 1 0 0 0 

0 1 0 0 1 0 0 1 1 0 



 

 

0 0 1 0 0 1 0 1 0 1 

0 0 0 1 0 0 1 0 1 1 

 

An assumption is made that there is only 1 positive item in the population. 

With this matrix, if the test outcome is (1 1 0 0 0), the first item is positive, 

since it is the only case that can make the outcomes of the first two test 

samples positive and the rest negative. Similarly, for any other possible test 

outcome, we can indicate which item is positive, although there are only 5 

test samples used. 
 

Detecting bugs using group testing 
 

This section discusses the use of group testing to determine fault locations in 

a program. Based on the authors’ knowledge, this is the first time group 

testing is used to detect program’s bugs although it has many applications in 

other fields (Clifford et al., 2010; Goodrich et al., 2005; Kainkaryam, 2009; 

Khattab et al., 2008; Rudra & Uurtamo, 2010; Xin et al., 2009). Firstly, a unit 

block of a program is defined - a program portion which should not be 

logically divided into smaller parts when locating bugs. It can be a basic 

block on a concrete program or an abstracted structure in an abstract 

program. Let C be a program, an ordered set 1{ }C nP B , ,B   where iB  is a 

unit block of C is called an execution path of C. This path is feasible if there 

exists an input that makes P execute from iB  to nB  with the same order as 

described in CP , otherwise it is infeasible. 

 

Example 4. Suppose we have a function: 

 
int isPositive(int n) 

{ 

  if (n > 0) { 

    return X; 

  } else { 

    returcn Y; 

  } 

} 

 
The unit-block representation will be: 
 
if S0 

  S1 

else 

  S2 



 

 

Thus, this function has two execution paths: P1 = (S0, S1) and P2 = (S0, S2). 
 

A testing matrix M of C is defined as a binary matrix ( )ijM m  where each 

column jM corresponds to a unit block jB  of C, denoted as 
j

MB . A row 

iM  of M is considered as a testing path, denoted as 
i

MP  iff CP  where

{  : 1}j

M ij Cj B m P   .   

 

Thus, when test cases are used to test a program P, it can be considered as if 

testing matrix M is used, whose rows correspond to the execution paths 

produced by the test cases when executed on P. In this context, a positive 

item is a unit block that causes error in the program. The process of using 

matrix M to find bugs on a program P is denoted as ξ(P, M ). The complexity 

of this process depends on the number of unit blocks and the program 

structure. 
 

Example 5. If one can produce two test cases which correspond to P1 and 

P2 for the function in Example 4, the testing matrix will be: 

 
S0 S1 S2 

1  1  0 

1  0  1 

 

Suppose the function has at most 1 bug. Since the testing matrix is 

1-separable, the buggy block can be determined based on the test outcome. If 

the test outcome is (0, 0), the function does not have error. If the test outcome 

is (1, 1), the buggy block is S0. Similarly, if the test outcome is (1, 0) or (0, 1), 

the buggy block is S1 or S2 respectivelyii. 

 

The experiments show that using group testing alone is quite good in finding 

bugs in the students programs, but sometimes wrong results were also 

possible (group testing does not return blocks contain buggy statements). In 

those cases, students do not know how to continue. So the researchers 

proposed another approach in which the spectrum-based fault localization 

and dynamic relevant slicing were combined to deal with this problem. 

 

 
 



 

 

SLICING SPECTRUM-BASED FAULT LOCALIZATION  
 

Spectrum-based fault localization 
 

Fault localization methods aim to detect bugs in a program based on testing, 

the same goal as group testing, and can be divided into three categories: 

spectrum-based, model-based, and proof-based. Whereas model-based 

(Abreu et al., 2009; Abreu et al., 2008) and proof-based (Christ et al., 2013; 

Ermis et al., 2012; Jose & Majumdar, 2011) methods return the output 

similar to group testing output, spectrum-based ones are different. In these 

methods, the input is program executions with a predefined test suite, and the 

output are statements rankings from the most to the least suspicious. With 

such output, students are guaranteed to find bugs when they trace down 

through these rankingsiii. Hence, this paper focuses on spectrum-based fault 

localization because it is a good complement for group testing. Some 

spectrum-based methods are presented as follows. 

 

 Zhang et al. (2012) highlights a method that use only failed test cases 

to rank statements. It calculates failure rate G(c) that statement s is 

executed c times to get pairs <c,G(c)> for each statement. Then it 

plots these pairs in a diagram and fits a line through them. The 

statement that has steeper line is more likely to contain errors. 

 

 In Jeffrey et al. (2008), a method called value replacement is 

presented. It alters values that are used in statements in failed 

executions and checks whether this alternation produces correct 

output. Those statements contain values that are more likely to 

produce correct output after the alternation are more likely the faults. 

 

 In Abreu et al. (2007) and Jones & Harrold (2005), two methods 

called Tarantula and Ochiai are introduced, which build a function 

that maps each statement to suspicious scores. The statement with 

higher score is more likely the buggy one. The details of these 

functions are explained below. 

 

 Renieris & Reiss (2003) present some other methods such as 

set-union, set-intersection, and nearest neighbor. In these methods, 

the system finds the initial set of most suspicious statements based on 



 

 

set operations. Then a search technique called SDG-ranking is 

applied to rank other statements. 

 

In the above methods, Tarantula and Ochiai were chosen to be implemented 

in the system because of their effectiveness and efficiency. The functions 

used in these methods are: 

 Tarantula: 
tf/)e(ftp/)e(p

tf/)e(f
)e(s


  

 Ochiai: 
))e(f)e(p(*tf

)e(f
)e(s


  

in which: 

 s(e): the suspicious score of statement e 

 tp: the number of passed test cases 

 tf: the number of failed test cases 

 p(e): the number of passed test cases go through statement e 

 f(e): the number of failed test cases go through statement e 

 

Example 6. Suppose we have a function that returns absolute value of an 

integer as follow (statement in line 4 is buggy): 
 

1:  int abs(int n)          

2:  { 

3:    if (n > 0) { 

4:      return -n;  

5:    } else { 

6:      return –n; 

7:    } 

8:  } 
 

If we have two test cases n = 1 and n = -1, we will have the following 

summary table: 

 

Statement in Line p(e) f(e) 
Suspicious score 

Tarantula Ochiai 

3 1 1 0.5 0.7 

4 0 1 1 1 

6 1 0 0 0 

 tp = 1 tf = 1   

 

We can see both methods return statement in line 4 as the most suspicious 

statement. 

 



 

 

Although these methods can give the good results (the buggy statements get 

high suspicious scores) in most cases, they have a shortcoming. Using these 

functions, statements in the same unit block always have the same suspicious 

scores although some statements do not affect the output. That lessens the 

quality of ranking statements. We can fix this problem by combining 

spectrum-based fault localization with slicing. 

 

Slicing spectrum-based fault localization 
 

Slicing are methods that can remove statements which do not affect the 

program output. Based on the work by When et al. (2011) and Zhang et al. 

(2005), the researchers have decided to combine dynamic relevant slicing 

with spectrum-based fault localization to get better resultiv. 

 

Example 7. The same function as in Example 6 is considered with one 

additional statement (line 4): 

 
1:  int abs(int n)          

2:  { 

3:    if (n > 0) { 

4:      int i = 0; 

5:      return -n;  

6:    } else { 

7:      return –n; 

8:    } 

9:  } 

 

With test case satisfies condition n > 0, an execution path goes through 

statements in line 3, 4, and 5. Statement in line 4 does not have any effect on 

the program output. Using dynamic slicing, this statement can be removed 

from the above execution path. 
 

To apply the slicing spectrum-based fault localization, the same functions are 

used with two modifications in calculating p(e) and f(e). Firstly, the 

execution paths are sliced to filter out irrelevant statements. After that, p(e) 

and f(e) are calculated as the number of passed/failed test cases that have 

statement e in sliced execution paths. 

 

Example 8. With the function as in Example 7 and with the test suite {n = 1; 

n = -1}, if spectrum-based fault localization with original execution paths is 

used, statement in line 4 and 5 have similar suspicious score equals 1 (and 

this is the highest score). Whereas the highest score for the statement in line 

5 is desirable, the score for the statement in line 4 is not needed at all. Using 



 

 

dynamic slicing, statement in line 4 is removed from the execution path and it 

will get suspicious score equals 0. In the end, the statement in line 5 is the 

only highest score statement.  

 

CASE STUDIES 
 

In this section, two wrong implementations of bubble sort algorithm are 

analysed in detail. The right implementation is as follow: 

 
1:  int* sort(int n, int a[])          

2:  { 

3:    int i = n - 1;                  // block S0 

4:    while (i > 0) {                 // block S1 

5:      int j = 0;                    // block S2  

6:      while (j < i) {               // block S3  

7:        if (a[j] > a[j + 1]) {      // block S4 

8:          int temp = a[j];          // block S5  

9:          a[j] = a[j + 1]; 

10:         a[j + 1] = temp; 

11:       }  

12:       j = j + 1;                  // block S6 

13:     } 

14:     i = i - 1;                    // block S7 

15:   } 

16:   return a;                       // block S8  

17: } 

 

Listing 1. The case study program (right implementation) 

 
 
Case study 1 
 
1: int* sort(int n, int a[])          

2: { 

3:  int i = n - 1;                   

4:  while (i > 0) {                  

5:   int j = 0;                      

6:   while (j < i) {                 

7:    if (a[j] > a[j + 1]) {       

8:     int temp = a[j];            

9:     a[j] = a[j + 1]; 

10:    a[j + 1] = temp + 1; 

11:   }  

12:   j = j + 1;                   

13:  } 

14:  i = i - 1;                     

15: } 

16: return a;                         

17:}



 

 

Listing 2. The case study program (wrong implementation 1) 
 

The statement in line 10 is logically wrong. Instead of a[j + 1] = temp; 

it is written as a[j + 1] = temp + 1;. Because that statement belongs to 

block S5, when using group testing, S5 is expected to be returned as error 

block. On the other hand, when analyzing with slicing spectrum-based fault 

localization, that statement should have the highest score. 
 

The testing matrix for the above program has 1343 rows and 51 columns. In 

this matrix, some rows represent infeasible execution paths or, Test Case 

Generator module cannot generate test cases for them. Furthermore, some 

columns represent the same blocks because these blocks are repeated in loop 

structure. After deleting these rows and compacting each group into columns 

by representing the same blocks into one column, a testing matrix with only 

11 rows and 9 columns left is produced. 

 
S0 S1 S2 S3 S4 S5 S6 S7 S8 

1  1  0  0  0  0  0  0  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  0  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  0  1  1  1 

 

The test outcome after running the test cases is (0 1 0 1 1 1 1 1 1 1 0). The 

system compares the test outcome with each column in the testing matrix. 

Because test outcome is identical to S5-column, the system returns S5 as an 

error block. 

 

Using the slicing spectrum-based fault localization, the statement in line 10 

gets the highest suspicious score equals to 1.0 for both functions. The 

statements in lines 8 and 9 also have the same scores because they are in the 

same block with line 10 and are not removed by the slicing process. Hence, 

the results of the group testing and slicing spectrum-based fault localization 

are quite similar. 



 

 

Case study 2 
 
1: int* sort(int n, int a[])          

2: { 

3:  int i = n - 1;                   

4:  while (i > 0) {                  

5:   int j = 0;                      

6:   while (j < i) {                 

7:    if (a[j] < a[j + 1]) {       

8:     int temp = a[j];            

9:     a[j] = a[j + 1]; 

10:    a[j + 1] = temp; 

11:   }  

12:   j = j + 1;                   

13:  } 

14:  i = i - 1;                     

15: } 

16: return a;                         

17:} 

 

Listing 3. The case study program (wrong implementation 2) 

 

This time the wrong statement is in line 7. Instead of if (a[j] > a[j + 1]) 

it is written as if (a[j] < a[j + 1]). Block S4 is expected to be returned 

when using group testing and statement in line 7 will have the highest score 

when using slicing spectrum-based fault localization. 

 

Similar to Case Study 1, the final test matrix will have 11 rows and 9 

columns as follow: 

 
S0 S1 S2 S3 S4 S5 S6 S7 S8 

1  1  0  0  0  0  0  0  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  0  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1 

1  1  1  1  1  0  1  1  1 

 
The test outcome after running test cases is (0 1 1 1 1 1 1 1 1 1 1). In this case, 

the test outcome is identical not only to S4-column but also S2, S3, S6, and 

S7-columns, so the system will return all of them as error blocks. We cannot 

avoid this result because in this program S2, S3, S4, S6, and S7 are always 

executed together, so their columns in test matrix are identical. But this result 



 

 

is not too bad, because when programmers want to debug, the maximum 

number of statements they need to check is 5 (the total number of statements 

in these blocks) instead of 11 statements in the whole programs. 

 

The results from using the slicing spectrum-based fault localization are as 

follow: with Ochiai function for statements in block S2, S3, S4, S6, and S7 

that have similar highest suspicious scores equals 1.0, with Tarantula 

function there are 3 more statements in block S5 with that score. This case 

study proves that the use of slicing spectrum-based fault localization with 

Tarantula function will return the worst result.  

 

EXPERIMENTS 
 

The system was experimented with 6 well-known algorithms as shown in 

Table 1. 

 

In each algorithm, different implementations are created. Each 

implementation has exactly one bug. The experiments are used to test 

whether the system can show useful information to help programmers in the 

debugging process. 

 

Example 9. Below are two implementations of finding the absolute value 

algorithm with bugs. 

 

Implementation 1: 
1: int abs(int n) { 

2:   if (n >= 0) { 

3:     return n; 

4:   } else { 

5:     return n; 

6:   } 

7: } 

 

Implementation 2: 
1: int abs(int n) { 

2:   if (n >= 0) { 

3:     return n + 1; 

4:   } else { 

5:     return -n; 

6:   } 

7: } 

 

 

 

 



 

 

Table 1. The experimental algorithms 

 

Number Algorithms Descriptions 
Number of 

implementations 

I Finding absolute value 
Finding absolute value 

of a parameter 
7 

II 
Checking odd/even 

property 

Checking whether a 

parameter is odd or even 
3 

III 
Finding maximum 

number 

Finding the maximum 

between two parameters 
4 

IV Calculating factorial 
Finding factorial of a 

parameter 
7 

V Selection sort 
Sorting an array using 

selection sort algorithm 
3 

VI Bubble sort 
Sorting an array using 

bubble sort algorithm 
4 

 

To prove the usefulness of the system results, the number of statements 

programmers need to check is calculated in order to find the buggy one. 

These numbers are calculated from two contexts: programmers are lucky and 

programmers are unlucky as follow: 

 

 Group testing: 

o Lucky: Among all the statements in returned blocks, the buggy 

statement is checked first. 

o Unlucky: Among all the statements in returned blocks, the buggy 

statement is checked last. 

 

 Slicing spectrum-based fault localization: 

o Lucky: Programmers check the statement from high to low 

suspicious scores. If the buggy statement has similar score with 

others, it is checked first. 

o Unlucky: Programmers check the statement from high to low 

suspicious scores. If the buggy statement has similar score with 

others, it is checked last. 

 

It is also noted that sometimes group testing returns wrong results. In these 

cases, the number of statements needs to be checked is defined as the number 



 

 

of statements in the whole program regardless of the context. In the 

experiments, there are 4 implementations (2 for algorithm I, 1 for algorithm 

III, and 1 for algorithm IV) that indicate that group testing does not give the 

right answer. 

 

The results of the experiments are shown in Tables 2, 3, and 4. These tables 

indicate that by using group testing, programmers only need to check 1 to 2 

statements if they are lucky. In case programmers are unlucky, the maximum 

number of statements they need to check is 8.33 in Selection sort algorithm. 

Similarly, the minimum number of statements programmers need to check 

while analyzing program with slicing spectrum-based fault localization is 

only 1 to 2 statements, while the maximum number are 9.67 and 9.33 (using 

Tarantula and Ochiai function respectively). 

 

Table 2. The experiment results for group testing 

 

Algorithms 

Average number 

of statements in 

implementations 

Average number of 

statements need to be 

checked 

Lucky Unlucky 

Finding absolute value 3.14 1.57 1.71 

Checking odd/even property 3.00 1.00 1.00 

Finding maximum number 4.25 1.75 1.75 

Calculating factorial 5.57 2.00 3.71 

Selection sort 13.00 1.00 8.33 

Bubble sort 12.50 1.00 4.50 
 

 

Table 3: The experiment results for 

slicing spectrum-based fault localization (Tarantula function) 

 

Algorithms 

Average number 

of statements in 

implementations 

Average number of 

statements need to be 

checked 

Lucky Unlucky 

Finding absolute value 3.14 1.43 1.43 

Checking odd/even property 3.00 1.00 1.67 

Finding maximum number 4.25 1.25 1.25 



 

 

Calculating factorial 5.57 1.57 4.00 

Selection sort 13.00 1.00 9.67 

Bubble sort 12.50 2.00 6.25 

 

 

Table 4: The experiment results for 

slicing spectrum-based fault localization (Ochiai function) 

 

Algorithms 

Average number 

of statements in 

implementations 

Average number of 

statements need to be 

checked 

Lucky Unlucky 

Finding absolute value 3.14 1.29 1.29 

Checking odd/even property 3.00 1.00 1.00 

Finding maximum number 4.25 1.25 1.25 

Calculating factorial 5.57 1.57 3.71 

Selection sort 13.00 1.00 9.33 

Bubble sort 12.50 1.00 4.50 

 

 
 
CONCLUSION 
 

This paper presented a framework to help students practice their 

programming skills. Besides the ability to verify the correctness of the 

program, the proposed system can identify bugs automatically, thanks to 

group testing and slicing spectrum-based fault localization. However, the 

system still needs improvement. Firstly, group testing and spectrum-based 

fault localization cannot do well in case programs have more than one bug. 

To deal with this problem, a model-based fault localization method is 

offered. Secondly, often programs have bugs because of missing code, which 

means programmers forget to implement some cases during the  

specification. A method based on comparing the executions of students’ 

programs and teacher’s solution has been considered to detect the missing 

code. The results of the utilization of this method will be published in due 

course. 
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