

Assisting Students in Finding Bugs and Their Locations in

Programming Solutions

Long H. PHAMa, Giang V. TRINHa, Mai H. DINHa, Nam P. MAIa,

Tho T. QUANa and Hung Q. NGOb

aHo Chi Minh City University of Technology, Ho Chi Minh City, Vietnam

bState University of New York at Buffalo, New York, United State

ABSTRACT

Teaching experience shows that programming is time consuming and can be

acquired with substantial practice. Besides, students need to know whether

their solutions are correct or incorrect and the root causes of their errors.

Thus, teaching programming in a large class requires considerably many

teaching assistants, which is costly. More importantly, a communication

means that can support students virtually anytime is also desirable.

In order to handle these problems, a static method was applied to build an

online intelligent tutoring system that can assist students checking their

solutions. In addition, when detecting the errors, this system can suggest

students to investigate the suspected code. This feature is really significant

for students to self-practice and improve their learning.

Keywords: Intelligent Tutoring System, Programming Exercises, Program

Verification, Group Testing, Fault Localization

INTRODUCTION

Programming is essential for any computer science study. Research and

experience show that practicing with problems is the best method to master

the programming skills. In traditional education, class tutors have to read

students’ programs to verify their correctness. However the number of

programs is often too much and code reading is error-sensitive. This explains

why the method is less effective in programming courses.

Automated assessment system is a good solution for this problem. This

system checks whether the students’ programs qualify the test cases in an

automatically generated test suite (Ala-Mutka, 2005; Douce et al., 2005;

Jurado et al., 2012; Ihantola et al., 2010; Kaushal & Singh, 2012). However,

this approach has some disadvantages. For example, the test suite must be

large enough to cover all possible errors in the program and executing

possibly buggy program is potentially dangerous for the system.

To overcome such obstacles, static methods are proposed to statistically

verify the programs correctness without running the programs. Two

statistical methods referred as theorem proving and model checking are

combined to build a web-based tutoring system (Quan et al., 2009). These

methods are also known as formal methods, whereby mathematics-based

techniques are used to check the program properties. While theorem proving

can verify the program correctness, model checking can generate counter

examples to help trace down the faults (bugs) via the corresponding

execution paths if the program is false.

However, this system can only help learners to be aware of programs

correctness. It cannot help locate the root causes of the problems effectively

since the generated counter examples are too complicated for students to

follow. Moreover, determining the root cause locations alongside the

execution paths provided by the counter examples is non-trivial, especially

for novice learners in programming.

Thus, it is intuitively more convenient if identification of the program parts is

identified. This will most likely contain the root causes and can be showed to

the students for further investigation. This was the motivation for the

researchers to develop a framework in which the above system is combined

with group testing and slicing spectrum-based fault localization to achieve

the goal. Group testing is a simple yet powerful method to locate faults in the

program, slicing spectrum-based fault localization on the contrary, is more

complex. However, it can help to find bugs in case group testing gives the

wrong answer. So group testing and slicing spectrum-based fault localization

act as complements in the system. The above framework was experimented

with non-trivial exercises in Programming Fundamentals course and positive

results were recorded. This paper presents the proposed framework.

Subsequently, group testing and slicing spectrum-based fault localization are

also presented. This is followed by the presentation of two case studies. The

final section concludes the paper.

THE PROPOSED FRAMEWORK

Figure 1. The proposed framework

Figure 1 depicts the proposed framework on three components: Teacher,

Learner and Coordinator. The Teacher provides the programming problems

presented in the Problem Description Module. When the Learners visit the

system, they can try to solve these problems. The Learner’s submitted

program is verified by the Correctness Proving module. The Model

Checking component will identify and show the execution paths which lead

to error, if the program is false.

When the Learner wants to find buggy portions in the program, Group

Testing and Fault Localization modules will detect them. The process of

detecting buggy portions uses test cases generated by Test Cases Generator

module. In this module, test cases generated by constraint-based test-cases

generation algorithm (Le et al., 2013) were combined with random test cases

(although test cases are generated randomly, they are chosen to cover

different execution paths in the program) to have a suitable test that can

identify as many failed execution paths in the program as possible. In the

system, instead of actually running the program, a simulator is used to find

the program output according to the test cases. With this way, the system is

safe and students can be influenced not to use bad programming structures.

The Coordinator can use the system information such as common errors or

behaviors of active learners to assess the course performance. This

information is stored and analyzed in the Analysis Module. The Information

Exchange module helps other modules exchange data. These data are

XML-based and they are stored in the database for convenient. The above

framework has already been implemented as a real web-based systemi. In this

system, there are some predefined programming problems as listed in Figure

2. The students can choose to implement the problem of their choice. Once

selected, the website navigates to an interface in which students can write

and submit their code as in Figure 3.

Figure 2. List of exercises on Programming Problems

Figure 3. The interface for writing and submitting code

The framework is considered as an improvement of the existing system and

is made from three main components: theorem proving to verify correctness;

model checking to show failed execution paths; group testing and fault

localization to identify buggy parts. Quan et al. (2009) present the details of

theorem proving and model checking. In the following sections, group

testing and slicing spectrum-based fault localization are discussed in more

detail.

GROUP TESTING

Basic theory

In 1943, Dorfman wanted to test whether any troop member had contracted

the syphilis disease among the large population of soldiers during WWII

(Dorfman, 1943). Instead of individual testing, which costs huge time and

efforts, the soldiers were specifically divided into groups. The blood samples

of each group were tested and if the test outcome for a group was positive, it

was hypothesized that at least one soldier in the group was infected.

Otherwise, all members of the group were healthy. More importantly, the test

outcome could be used to exactly identify the infected individuals. This

technique was known as group testing.

If a group testing strategy is applied with t test samples and N items, the

strategy can be represented using a t x N binary matrix, ()ijM m where

() 1ijm iff item j belongs to test sample i. iM is also used to denote the set

of columns corresponding to the 1-entries of row i. Similarly, jM is used to

denote the set of rows corresponding to the 1-entries of column j. In other

words, iM is the ith test sample, and jM is the set of tests containing item j.

Example 1. Below is a testing matrix with t = 4 and N = 6:

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 0

0 0 1 0 1 1

1M is the first test sample which corresponds to first row in testing matrix.
1M corresponds to the first column, indicates the set of tests containing the

first item. In that case, only the first and the second tests contain the first

item.

Definition 1 (Separable matrix). A binary matrix M is d-separable if the

unions of up to d columns of M are all distinct.

Definition 2 (Disjunct matrix). A binary matrix M is d-disjunct if the union

of arbitrary ≤ d columns does not cover another column.

Example 2. In Example 1, all columns in testing matrix are distinct, so it is

1-separable matrix. And it is also 1-disjunct matrix because if an arbitrary

column is selected, this column does not cover any other columns.

If M is d-separable matrix and the number of positive items in the population

is less than or equal to d, it can always be determined where they are from the

test outcome using non-adaptive combinatorial group testing theory.

Specially, if M is d-disjunct matrix, the positive items can be determined

effectively using proper decoding algorithms.

Example 3. The following is a 1-disjunct matrix with 10 items:

1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1

An assumption is made that there is only 1 positive item in the population.

With this matrix, if the test outcome is (1 1 0 0 0), the first item is positive,

since it is the only case that can make the outcomes of the first two test

samples positive and the rest negative. Similarly, for any other possible test

outcome, we can indicate which item is positive, although there are only 5

test samples used.

Detecting bugs using group testing

This section discusses the use of group testing to determine fault locations in

a program. Based on the authors’ knowledge, this is the first time group

testing is used to detect program’s bugs although it has many applications in

other fields (Clifford et al., 2010; Goodrich et al., 2005; Kainkaryam, 2009;

Khattab et al., 2008; Rudra & Uurtamo, 2010; Xin et al., 2009). Firstly, a unit

block of a program is defined - a program portion which should not be

logically divided into smaller parts when locating bugs. It can be a basic

block on a concrete program or an abstracted structure in an abstract

program. Let C be a program, an ordered set 1{ }C nP B , ,B where iB is a

unit block of C is called an execution path of C. This path is feasible if there

exists an input that makes P execute from iB to nB with the same order as

described in CP , otherwise it is infeasible.

Example 4. Suppose we have a function:

int isPositive(int n)

{

 if (n > 0) {

 return X;

 } else {

 returcn Y;

 }

}

The unit-block representation will be:

if S0

 S1

else

 S2

Thus, this function has two execution paths: P1 = (S0, S1) and P2 = (S0, S2).

A testing matrix M of C is defined as a binary matrix ()ijM m where each

column jM corresponds to a unit block jB of C, denoted as
j

MB . A row

iM of M is considered as a testing path, denoted as
i

MP iff CP where

{ : 1}j

M ij Cj B m P .

Thus, when test cases are used to test a program P, it can be considered as if

testing matrix M is used, whose rows correspond to the execution paths

produced by the test cases when executed on P. In this context, a positive

item is a unit block that causes error in the program. The process of using

matrix M to find bugs on a program P is denoted as ξ(P, M). The complexity

of this process depends on the number of unit blocks and the program

structure.

Example 5. If one can produce two test cases which correspond to P1 and

P2 for the function in Example 4, the testing matrix will be:

S0 S1 S2

1 1 0

1 0 1

Suppose the function has at most 1 bug. Since the testing matrix is

1-separable, the buggy block can be determined based on the test outcome. If

the test outcome is (0, 0), the function does not have error. If the test outcome

is (1, 1), the buggy block is S0. Similarly, if the test outcome is (1, 0) or (0, 1),

the buggy block is S1 or S2 respectivelyii.

The experiments show that using group testing alone is quite good in finding

bugs in the students programs, but sometimes wrong results were also

possible (group testing does not return blocks contain buggy statements). In

those cases, students do not know how to continue. So the researchers

proposed another approach in which the spectrum-based fault localization

and dynamic relevant slicing were combined to deal with this problem.

SLICING SPECTRUM-BASED FAULT LOCALIZATION

Spectrum-based fault localization

Fault localization methods aim to detect bugs in a program based on testing,

the same goal as group testing, and can be divided into three categories:

spectrum-based, model-based, and proof-based. Whereas model-based

(Abreu et al., 2009; Abreu et al., 2008) and proof-based (Christ et al., 2013;

Ermis et al., 2012; Jose & Majumdar, 2011) methods return the output

similar to group testing output, spectrum-based ones are different. In these

methods, the input is program executions with a predefined test suite, and the

output are statements rankings from the most to the least suspicious. With

such output, students are guaranteed to find bugs when they trace down

through these rankingsiii. Hence, this paper focuses on spectrum-based fault

localization because it is a good complement for group testing. Some

spectrum-based methods are presented as follows.

 Zhang et al. (2012) highlights a method that use only failed test cases

to rank statements. It calculates failure rate G(c) that statement s is

executed c times to get pairs <c,G(c)> for each statement. Then it

plots these pairs in a diagram and fits a line through them. The

statement that has steeper line is more likely to contain errors.

 In Jeffrey et al. (2008), a method called value replacement is

presented. It alters values that are used in statements in failed

executions and checks whether this alternation produces correct

output. Those statements contain values that are more likely to

produce correct output after the alternation are more likely the faults.

 In Abreu et al. (2007) and Jones & Harrold (2005), two methods

called Tarantula and Ochiai are introduced, which build a function

that maps each statement to suspicious scores. The statement with

higher score is more likely the buggy one. The details of these

functions are explained below.

 Renieris & Reiss (2003) present some other methods such as

set-union, set-intersection, and nearest neighbor. In these methods,

the system finds the initial set of most suspicious statements based on

set operations. Then a search technique called SDG-ranking is

applied to rank other statements.

In the above methods, Tarantula and Ochiai were chosen to be implemented

in the system because of their effectiveness and efficiency. The functions

used in these methods are:

 Tarantula:
tf/)e(ftp/)e(p

tf/)e(f
)e(s

 Ochiai:
))e(f)e(p(*tf

)e(f
)e(s

in which:

 s(e): the suspicious score of statement e

 tp: the number of passed test cases

 tf: the number of failed test cases

 p(e): the number of passed test cases go through statement e

 f(e): the number of failed test cases go through statement e

Example 6. Suppose we have a function that returns absolute value of an

integer as follow (statement in line 4 is buggy):

1: int abs(int n)

2: {

3: if (n > 0) {

4: return -n;

5: } else {

6: return –n;

7: }

8: }

If we have two test cases n = 1 and n = -1, we will have the following

summary table:

Statement in Line p(e) f(e)
Suspicious score

Tarantula Ochiai

3 1 1 0.5 0.7

4 0 1 1 1

6 1 0 0 0

 tp = 1 tf = 1

We can see both methods return statement in line 4 as the most suspicious

statement.

Although these methods can give the good results (the buggy statements get

high suspicious scores) in most cases, they have a shortcoming. Using these

functions, statements in the same unit block always have the same suspicious

scores although some statements do not affect the output. That lessens the

quality of ranking statements. We can fix this problem by combining

spectrum-based fault localization with slicing.

Slicing spectrum-based fault localization

Slicing are methods that can remove statements which do not affect the

program output. Based on the work by When et al. (2011) and Zhang et al.

(2005), the researchers have decided to combine dynamic relevant slicing

with spectrum-based fault localization to get better resultiv.

Example 7. The same function as in Example 6 is considered with one

additional statement (line 4):

1: int abs(int n)

2: {

3: if (n > 0) {

4: int i = 0;

5: return -n;

6: } else {

7: return –n;

8: }

9: }

With test case satisfies condition n > 0, an execution path goes through

statements in line 3, 4, and 5. Statement in line 4 does not have any effect on

the program output. Using dynamic slicing, this statement can be removed

from the above execution path.

To apply the slicing spectrum-based fault localization, the same functions are

used with two modifications in calculating p(e) and f(e). Firstly, the

execution paths are sliced to filter out irrelevant statements. After that, p(e)

and f(e) are calculated as the number of passed/failed test cases that have

statement e in sliced execution paths.

Example 8. With the function as in Example 7 and with the test suite {n = 1;

n = -1}, if spectrum-based fault localization with original execution paths is

used, statement in line 4 and 5 have similar suspicious score equals 1 (and

this is the highest score). Whereas the highest score for the statement in line

5 is desirable, the score for the statement in line 4 is not needed at all. Using

dynamic slicing, statement in line 4 is removed from the execution path and it

will get suspicious score equals 0. In the end, the statement in line 5 is the

only highest score statement.

CASE STUDIES

In this section, two wrong implementations of bubble sort algorithm are

analysed in detail. The right implementation is as follow:

1: int* sort(int n, int a[])

2: {

3: int i = n - 1; // block S0

4: while (i > 0) { // block S1

5: int j = 0; // block S2

6: while (j < i) { // block S3

7: if (a[j] > a[j + 1]) { // block S4

8: int temp = a[j]; // block S5

9: a[j] = a[j + 1];

10: a[j + 1] = temp;

11: }

12: j = j + 1; // block S6

13: }

14: i = i - 1; // block S7

15: }

16: return a; // block S8

17: }

Listing 1. The case study program (right implementation)

Case study 1

1: int* sort(int n, int a[])

2: {

3: int i = n - 1;

4: while (i > 0) {

5: int j = 0;

6: while (j < i) {

7: if (a[j] > a[j + 1]) {

8: int temp = a[j];

9: a[j] = a[j + 1];

10: a[j + 1] = temp + 1;

11: }

12: j = j + 1;

13: }

14: i = i - 1;

15: }

16: return a;

17:}

Listing 2. The case study program (wrong implementation 1)

The statement in line 10 is logically wrong. Instead of a[j + 1] = temp;

it is written as a[j + 1] = temp + 1;. Because that statement belongs to

block S5, when using group testing, S5 is expected to be returned as error

block. On the other hand, when analyzing with slicing spectrum-based fault

localization, that statement should have the highest score.

The testing matrix for the above program has 1343 rows and 51 columns. In

this matrix, some rows represent infeasible execution paths or, Test Case

Generator module cannot generate test cases for them. Furthermore, some

columns represent the same blocks because these blocks are repeated in loop

structure. After deleting these rows and compacting each group into columns

by representing the same blocks into one column, a testing matrix with only

11 rows and 9 columns left is produced.

S0 S1 S2 S3 S4 S5 S6 S7 S8

1 1 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1

The test outcome after running the test cases is (0 1 0 1 1 1 1 1 1 1 0). The

system compares the test outcome with each column in the testing matrix.

Because test outcome is identical to S5-column, the system returns S5 as an

error block.

Using the slicing spectrum-based fault localization, the statement in line 10

gets the highest suspicious score equals to 1.0 for both functions. The

statements in lines 8 and 9 also have the same scores because they are in the

same block with line 10 and are not removed by the slicing process. Hence,

the results of the group testing and slicing spectrum-based fault localization

are quite similar.

Case study 2

1: int* sort(int n, int a[])

2: {

3: int i = n - 1;

4: while (i > 0) {

5: int j = 0;

6: while (j < i) {

7: if (a[j] < a[j + 1]) {

8: int temp = a[j];

9: a[j] = a[j + 1];

10: a[j + 1] = temp;

11: }

12: j = j + 1;

13: }

14: i = i - 1;

15: }

16: return a;

17:}

Listing 3. The case study program (wrong implementation 2)

This time the wrong statement is in line 7. Instead of if (a[j] > a[j + 1])

it is written as if (a[j] < a[j + 1]). Block S4 is expected to be returned

when using group testing and statement in line 7 will have the highest score

when using slicing spectrum-based fault localization.

Similar to Case Study 1, the final test matrix will have 11 rows and 9

columns as follow:

S0 S1 S2 S3 S4 S5 S6 S7 S8

1 1 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1

The test outcome after running test cases is (0 1 1 1 1 1 1 1 1 1 1). In this case,

the test outcome is identical not only to S4-column but also S2, S3, S6, and

S7-columns, so the system will return all of them as error blocks. We cannot

avoid this result because in this program S2, S3, S4, S6, and S7 are always

executed together, so their columns in test matrix are identical. But this result

is not too bad, because when programmers want to debug, the maximum

number of statements they need to check is 5 (the total number of statements

in these blocks) instead of 11 statements in the whole programs.

The results from using the slicing spectrum-based fault localization are as

follow: with Ochiai function for statements in block S2, S3, S4, S6, and S7

that have similar highest suspicious scores equals 1.0, with Tarantula

function there are 3 more statements in block S5 with that score. This case

study proves that the use of slicing spectrum-based fault localization with

Tarantula function will return the worst result.

EXPERIMENTS

The system was experimented with 6 well-known algorithms as shown in

Table 1.

In each algorithm, different implementations are created. Each

implementation has exactly one bug. The experiments are used to test

whether the system can show useful information to help programmers in the

debugging process.

Example 9. Below are two implementations of finding the absolute value

algorithm with bugs.

Implementation 1:
1: int abs(int n) {

2: if (n >= 0) {

3: return n;

4: } else {

5: return n;

6: }

7: }

Implementation 2:
1: int abs(int n) {

2: if (n >= 0) {

3: return n + 1;

4: } else {

5: return -n;

6: }

7: }

Table 1. The experimental algorithms

Number Algorithms Descriptions
Number of

implementations

I Finding absolute value
Finding absolute value

of a parameter
7

II
Checking odd/even

property

Checking whether a

parameter is odd or even
3

III
Finding maximum

number

Finding the maximum

between two parameters
4

IV Calculating factorial
Finding factorial of a

parameter
7

V Selection sort
Sorting an array using

selection sort algorithm
3

VI Bubble sort
Sorting an array using

bubble sort algorithm
4

To prove the usefulness of the system results, the number of statements

programmers need to check is calculated in order to find the buggy one.

These numbers are calculated from two contexts: programmers are lucky and

programmers are unlucky as follow:

 Group testing:

o Lucky: Among all the statements in returned blocks, the buggy

statement is checked first.

o Unlucky: Among all the statements in returned blocks, the buggy

statement is checked last.

 Slicing spectrum-based fault localization:

o Lucky: Programmers check the statement from high to low

suspicious scores. If the buggy statement has similar score with

others, it is checked first.

o Unlucky: Programmers check the statement from high to low

suspicious scores. If the buggy statement has similar score with

others, it is checked last.

It is also noted that sometimes group testing returns wrong results. In these

cases, the number of statements needs to be checked is defined as the number

of statements in the whole program regardless of the context. In the

experiments, there are 4 implementations (2 for algorithm I, 1 for algorithm

III, and 1 for algorithm IV) that indicate that group testing does not give the

right answer.

The results of the experiments are shown in Tables 2, 3, and 4. These tables

indicate that by using group testing, programmers only need to check 1 to 2

statements if they are lucky. In case programmers are unlucky, the maximum

number of statements they need to check is 8.33 in Selection sort algorithm.

Similarly, the minimum number of statements programmers need to check

while analyzing program with slicing spectrum-based fault localization is

only 1 to 2 statements, while the maximum number are 9.67 and 9.33 (using

Tarantula and Ochiai function respectively).

Table 2. The experiment results for group testing

Algorithms

Average number

of statements in

implementations

Average number of

statements need to be

checked

Lucky Unlucky

Finding absolute value 3.14 1.57 1.71

Checking odd/even property 3.00 1.00 1.00

Finding maximum number 4.25 1.75 1.75

Calculating factorial 5.57 2.00 3.71

Selection sort 13.00 1.00 8.33

Bubble sort 12.50 1.00 4.50

Table 3: The experiment results for

slicing spectrum-based fault localization (Tarantula function)

Algorithms

Average number

of statements in

implementations

Average number of

statements need to be

checked

Lucky Unlucky

Finding absolute value 3.14 1.43 1.43

Checking odd/even property 3.00 1.00 1.67

Finding maximum number 4.25 1.25 1.25

Calculating factorial 5.57 1.57 4.00

Selection sort 13.00 1.00 9.67

Bubble sort 12.50 2.00 6.25

Table 4: The experiment results for

slicing spectrum-based fault localization (Ochiai function)

Algorithms

Average number

of statements in

implementations

Average number of

statements need to be

checked

Lucky Unlucky

Finding absolute value 3.14 1.29 1.29

Checking odd/even property 3.00 1.00 1.00

Finding maximum number 4.25 1.25 1.25

Calculating factorial 5.57 1.57 3.71

Selection sort 13.00 1.00 9.33

Bubble sort 12.50 1.00 4.50

CONCLUSION

This paper presented a framework to help students practice their

programming skills. Besides the ability to verify the correctness of the

program, the proposed system can identify bugs automatically, thanks to

group testing and slicing spectrum-based fault localization. However, the

system still needs improvement. Firstly, group testing and spectrum-based

fault localization cannot do well in case programs have more than one bug.

To deal with this problem, a model-based fault localization method is

offered. Secondly, often programs have bugs because of missing code, which

means programmers forget to implement some cases during the

specification. A method based on comparing the executions of students’

programs and teacher’s solution has been considered to detect the missing

code. The results of the utilization of this method will be published in due

course.

REFERENCES

Abreu, R., Zoeteweij, P., & Van Gemund, A. J. (2009, November).

Spectrum-based multiple fault localization. In Automated Software

Engineering, 2009. ASE'09. 24th IEEE/ACM International Conference on

(pp. 88-99). IEEE.

Abreu, R., Zoeteweij, P., & van Gemund, A. J. (2008, July). An

observation-based model for fault localization. In Proceedings of the 2008

international workshop on dynamic analysis: held in conjunction with the

ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA 2008) (pp. 64-70). ACM.

Abreu, R., Zoeteweij, P., & Van Gemund, A. J. (2007, September). On the

accuracy of spectrum-based fault localization. In Testing: Academic and

Industrial Conference Practice and Research Techniques-MUTATION,

2007. TAICPART-MUTATION 2007 (pp. 89-98). IEEE.

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for

programming assignments. Computer Science Education, 15(2), 83-102.

Christ, J., Ermis, E., Schäf, M., & Wies, T. (2013, January). Flow-sensitive

fault localization. In Giacobazzi, R., Berdine, J., & Mastroeni, I. (Eds.),

Verification, Model Checking, and Abstract Interpretation (pp. 189-208).

Springer Berlin Heidelberg.

Clifford, R., Efremenko, K., Porat, E., & Rothschild, A. (2010). Pattern

matching with don't cares and few errors. Journal of Computer and System

Sciences, 76(2), 115-124.

Dorfman, R. (1943). The detection of defective members of large

populations. The Annals of Mathematical Statistics, 14(4), 436-440.

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based

assessment of programming: A review. Journal on Educational Resources in

Computing (JERIC), 5(3), 4.

Ermis, E., Schäf, M., & Wies, T. (2012). Error invariants. In

Giannakopoulou, D., & Mery, D. (Eds.), FM 2012: Formal Methods (pp.

187-201). Springer Berlin Heidelberg.

Goodrich, M. T., Atallah, M. J., & Tamassia, R. (2005, January). Indexing

information for data forensics. In Ioannidis, J., Keromytis, A., & Yung, M.

(Eds.), Applied Cryptography and Network Security (pp. 206-221). Springer

Berlin Heidelberg.

Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010, October).

Review of recent systems for automatic assessment of programming

assignments. In Proceedings of the 10th Koli calling international

conference on computing education research (pp. 86-93). ACM.

Jeffrey, D., Gupta, N., & Gupta, R. (2008, July). Fault localization using

value replacement. In Proceedings of the 2008 international symposium on

Software testing and analysis (pp. 167-178). ACM.

Jones, J. A., & Harrold, M. J. (2005, November). Empirical evaluation of the

tarantula automatic fault-localization technique. In Proceedings of the 20th

IEEE/ACM international Conference on Automated software engineering

(pp. 273-282). ACM.

Jose, M., & Majumdar, R. (2011, June). Cause clue clauses: error localization

using maximum satisfiability. In ACM SIGPLAN Notices (Vol. 46, No. 6, pp.

437-446). ACM.

Jurado, F., Redondo, M. A., & Ortega, M. (2012). Using fuzzy logic applied

to software metrics and test cases to assess programming assignments and

give advice. Journal of Network and Computer Applications, 35(2), 695-712.

Kainkaryam, R. M., & Woolf, P. J. (2009). Pooling in high-throughput drug

screening. Current opinion in drug discovery & development, 12(3), 339.

Kaushal, R., & Singh, A. (2012, July). Automated evaluation of

programming assignments. In Engineering Education: Innovative Practices

and Future Trends (AICERA), 2012 IEEE International Conference on (pp.

1-5). IEEE.

Khattab, S., Gobriel, S., Melhem, R., & Mossé, D. (2008, April). Live baiting

for service-level dos attackers. In INFOCOM 2008. The 27th Conference on

Computer Communications. IEEE (pp. 171-175). IEEE.

Le, A. D., Quan, T. T., Huynh, N. T., Nguyen, P. H., & Le, N. V. (2013).

Combined Constraint-Based Analysis for Efficient Software Regression

Detection in Evolving Programs. In Escalona, M. J., Cordeiro, J., &

Shishkov, B. (Ed.), Software and Data Technologies (pp. 108-120). Springer

Berlin Heidelberg.

Quan, T. T., Nguyen, P. H., Bui, T. H., Huynh, L. V., & Do, A. T. (2009,

August). A framework for automatic verification of programing exercises. In

Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd

IEEE International Conference on (pp. 41-45). IEEE.

Renieres, M., & Reiss, S. P. (2003, October). Fault localization with nearest

neighbor queries. In Automated Software Engineering, 2003. Proceedings.

18th IEEE International Conference on (pp. 30-39). IEEE.

Rudra, A., & Uurtamo, S. (2010). Data stream algorithms for codeword

testing. In Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,

& Spirakis, P. (Eds.), Automata, Languages and Programming (pp.

629-640). Springer Berlin Heidelberg.

Wen, W., Li, B., Sun, X., & Li, J. (2011). Program slicing spectrum-based

software fault localization. In SEKE (pp. 213-218).

Xin, X., Rual, J. F., Hirozane-Kishikawa, T., Hill, D. E., Vidal, M., Boone,

C., & Thierry-Mieg, N. (2009). Shifted Transversal Design smart-pooling for

high coverage interactome mapping. Genome research, 19(7), 1262-1269.

Zhang, X., He, H., Gupta, N., & Gupta, R. (2005, September). Experimental

evaluation of using dynamic slices for fault location. In Proceedings of the

sixth international symposium on Automated analysis-driven debugging (pp.

33-42). ACM.

Zhang, Z., Chan, W. K., & Tse, T. H. (2012). Fault localization based only on

failed runs. Computer, 45(6), 64-71.

i http://elearning.cse.hcmut.edu.vn/provegroup/index.jsp
ii Sometimes, the test outcome has positive values but it is not identical with any column in

test matrix. In these cases, we return all columns cover the test outcome.
iii Slicing spectrum-based fault localization can also return wrong answers if test cases are

not good enough to detect failed execution paths. In our experiments, we do not encounter

this problem, thanks to Test Cases Generator module.
iv Actually, we can also combine group testing with slicing but we do not do so because we

want to keep group testing as simple as possible.

http://elearning.cse.hcmut.edu.vn/provegroup/index.jsp

